虚拟现实(VR)技术通常用于娱乐应用中;但是,它也已在我们生活的更严重方面(例如安全)中部署在实际应用中。为了支持在危险行业工作的人们,VR可以确保操作员操纵标准化的任务并协作以应对潜在的风险。令人惊讶的是,很少的研究重点是人们如何在VR环境中进行协作。很少有研究注意运营商在其协作任务中的认知负荷。一旦任务要求变得复杂,许多研究人员将专注于优化相互作用界面的设计,以减少操作员的认知负载。这种方法可能是有价值的。但是,它实际上可以使操作员承受更重要的认知负担,并可能导致更多的错误和协作失败。在本文中,我们提出了一个新的协作VR系统,以支持在VR环境中工作的两个遥控器,以远程控制未螺旋的地面车辆。我们使用比较的实验来评估协作VR系统,重点是在任务和操作总数上花费的时间。我们的结果表明,在两人组中,操作过程中的过程和操作过程中的认知负荷总数明显低于单人组。我们的研究阐明了设计VR系统的启示,以支持有关远程运营商工作流程的协作工作,而不是简单地优化设计成果。
translated by 谷歌翻译
变压器已被广泛用于整个幻灯片图像(WSI)分类,以进行肿瘤分级,预后分析等。然而,在公共变压器中,在令牌上的自我注意和位置嵌入策略的设计限制了有效性和效率在Gigapixel组织病理学图像的应用中。在本文中,我们提出了一个用于组织病理学WSI分类的内核注意变压器(KAT)。代币的信息传输是通过令牌与与WSI上一组位置锚有关的一组内核之间的交叉注意来实现的。与共同的变压器结构相比,提出的KAT可以更好地描述WSI局部区域的层次上下文信息,同时保持较低的计算复杂性。在具有2040 WSI的胃数据集和具有2560 WSIS的子宫内膜数据集上评估了该方法,并与6种最先进的方法进行了比较。实验结果表明,所提出的KAT在组织病理学WSI分类的任务中有效有效,并且优于最新方法。该代码可在https://github.com/zhengyushan/kat上找到。
translated by 谷歌翻译
局部表示学习是促进组织病理学整体幻灯片图像分析的性能的关键挑战。先前的表示学习方法遵循监督学习范式。但是,大规模WSIS的手动注释是耗时且劳动力密集的。因此,自我监督的对比学习最近引起了密集的关注。目前的对比学习方法将每个样本视为一个类别,这遭受了类碰撞问题,尤其是在组织病理学图像分析的领域。在本文中,我们提出了一个新颖的对比表示学习框架,称为病变感染对比学习(LACL),用于组织病理学整个幻灯片图像分析。我们基于内存库结构建立了病变队列,以存储不同类别WSIS的表示形式,这使对比模型可以在训练过程中选择性定义负面对。此外,我们设计了一个队列改进策略,以净化病变队列中存储的表示形式。实验结果表明,LACL在不同数据集上学习在组织病理学图像表示学习中的最佳性能,并且在不同的WSI分类基准下的最先进方法优于最先进的方法。该代码可在https://github.com/junl21/lacl上获得。
translated by 谷歌翻译
进化游戏理论一直是将经典游戏理论与多动力系统中的学习动力描述相结合的成功工具。前提是一些相互作用玩家的对称结构,许多研究一直集中在使用简化的启发式收益表作为分析相互作用动态的输入。然而,即使对于最先进的方法,也有两个限制。首先,分析简化的收益表时存在不准确性。其次,没有现有的工作能够处理2种人口多人游戏不对称游戏。在本文中,我们填补了启发式收益表和动态分析之间的空白,而无需任何不准确。此外,我们为$ m $ $ n $ n $ 2人群的多人游戏提出了一个通用框架。然后,我们将方法与一些经典游戏中的最新方法进行了比较。最后,为了说明我们的方法,我们对Wolfpack和Starcraft II进行了经验游戏理论分析,这两者都涉及复杂的多基因相互作用。
translated by 谷歌翻译
近年来,移动机器人的安全问题引起了人们的关注。在本文中,我们提出了一种智能的物理攻击,通过从外部观察中学习障碍 - 避免机制,将移动机器人置于预设位置。我们作品的显着新颖性在于揭示具有智能和高级设计的基于物理攻击的可能性,可以带来真正的威胁,而没有对系统动态或对内部系统的访问的先验知识。传统网络空间安全中的对策无法处理这种攻击。练习,拟议的攻击的基石是积极探索受害者机器人与环境的复杂相互作用的特征,并学习对其行为的有限观察中表现出的障碍知识。然后,我们提出了最短的路径和手持攻击算法,以从巨大的运动空间中找到有效的攻击路径,从而在路径长度和活动期间分别以低成本实现了驾驶到陷阱目标。证明了算法的收敛性,并进一步得出了攻击性能范围。广泛的模拟和现实生活实验说明了拟议攻击的有效性,招呼未来对机器人系统的物理威胁和防御的研究。
translated by 谷歌翻译
我们引入了一个新的隐式形状表示,称为基于射线的隐式函数(PRIF)。与基于处理空间位置的签名距离函数(SDF)的大多数现有方法相反,我们的表示形式在定向射线上运行。具体而言,PRIF的配制是直接产生给定输入射线的表面命中点,而无需昂贵的球体跟踪操作,因此可以有效地提取形状提取和可区分的渲染。我们证明,经过编码PRIF的神经网络在各种任务中取得了成功,包括单个形状表示,类别形状的生成,从稀疏或嘈杂的观察到形状完成,相机姿势估计的逆渲染以及带有颜色的神经渲染。
translated by 谷歌翻译
分类网络已用于弱监督语义分割(WSSS)中,以通过类激活图(CAM)进行细分对象。但是,没有像素级注释,已知它们主要是(1)集中在歧视区域上,以及(2)产生弥漫性凸轮而没有定义明确的预测轮廓。在这项工作中,我们通过改善CAM学习来缓解这两个问题。首先,我们根据CAM引起的类别概率质量函数来合并重要性抽样,以产生随机图像级别的类预测。如我们的经验研究所示,这导致分割涵盖更大程度的对象。其次,我们制定了特征相似性损失项,该术语进一步改善了图像中边缘的预测轮廓的对齐。此外,我们通过测量轮廓f-评分作为对公共区域MIOU度量的补充,将新的光芒放到了WSS的问题上。我们表明,我们的方法在轮廓质量方面显着优于以前的方法,同时匹配了区域相似性的最新方法。
translated by 谷歌翻译
我们提出了一种通过大气湍流(称为Turbugan)进行成像的自我监督和自我校准的多拍方法。我们的方法不需要配对的训练数据,适应湍流的分布,利用特定于域的数据先验,并且可以从数十万概括到数千个测量值。我们通过适合Cryogan的对抗传感框架来实现此类功能,该框架使用歧视网络来匹配捕获和模拟测量的分布。我们的框架是通过(1)概括向前测量模型以通过跨界湍流来纳入照明传播的物理准确和计算有效模型的基础上的,(2)使适应性略有指定的远期模型,以及(3)利用域特异性域的先验知识先验知识的先验知识。使用预验证的生成网络,如果可用。我们在计算模拟和实验捕获的图像上验证了Turbugan,并用各种湍流扭曲。
translated by 谷歌翻译
传统的静态知识图形在关系数据中的模型实体作为节点,由特定关系类型的边缘连接。然而,信息和知识不断发展,并且时间动态出现,预计会影响未来的情况。在时间知识图中,通过用时间戳或时间范围配备每个边缘,将时间信息集成到图表中。已经引入了基于嵌入的方法,以便在时间知识图上引入链接预测,但它们主要缺乏可解释性和可理解的推理链。特别是,它们通常不设计用于处理涉及未来时间戳的链路预测 - 事件预测。我们解决了对时间知识图表链接预测的任务,并介绍了一种基于通过时间随机散步提取的时间逻辑规则的可解释的框架。我们在三个基准数据集中比较Tlogic与最先进的基线,并显示出更好的整体性能,而我们的方法还提供了保留时间一致性的解释。此外,与基于最先进的嵌入的方法相比,TLOGIC在具有普通词汇表的相关数据集转移到相关的数据集中,TLOGIC在归纳规则中运行良好。
translated by 谷歌翻译
知识图形嵌入(KGE)是一个流行的kg推理和具有更高尺寸的训练桶的方法,通常优先于它们具有更好的推理能力。然而,高维kges对存储和计算资源构成了巨大挑战,并且不适合资源限制或时间约束应用,这更快和更便宜的推理是必要的。为了解决这个问题,我们提出了Dualde,一种知识蒸馏方法,从预先训练的高维老师KGE建立低维学生KGE。 Dualde考虑教师和学生之间的双重影响。在Dualde中,我们提出了一种软标签评估机制,可自适应地将不同的软标签和硬标签重量分配给不同的三元组,以及改善学生接受教师的两级蒸馏方法。我们的双式足够一般,可以应用于各种桶。实验结果表明,我们的方法可以成功将高维kge的嵌入参数减少7次 - 15次,并将推理速度提高2次 - 6次 - 保持高性能。我们还通过消融研究证明我们的软标签评估机制和两级蒸馏方法的有效性。
translated by 谷歌翻译